
BKY PROGRAMMING SYSTEMS BULLETIN #3
1st Edition

FTN4 OPTIMIZATION TECHNIQUES

November 1979

TWO-WEEK LOAN COPY

This is a Library Copy

which may be borrowed two weeks.

For a personal copy; call

Tech. Division; 6782.

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

LBL-10189/3
UC-32

1

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain conect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wan·anty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Lawrence Berkeley Laboratory Computer Center
Systems Programming Group
University of California

CONTENTS:
O. INTRODUCTION
1. COt1PILER OPTIMIZATIONS

Berkeley~ CA. 94720

1st Edition (Nov. 1979)
LBL-10189/3

FTN4 OptimizatiOt;! Techniques

~ CONTROL DATA CORP. ~

(Edited ~!.Friedman,

2. SOURCE CODE OPIMIZATIONS
3. PROGRAMMING FOR GREATER ACCURACY

This Bulletin is based on chapter 3 of the FORTRAN EXTENDED
Guide published by CONTROL DATA (publ. 60499700, rev.
slightly for improved clarity.

Version
A 1 7

4 User&s
and edited

This and other Programming Systems Bulletins are available from the Computer
Center Librarian, Room 50B-1245A, Lawrence Berkeley Lab., University of Calif.,
Berkeley, CA 94720 (415-486-5529).

Prog. Systems Bulletin 113: FTN4 tion 3-2

Q, INTRODUCTION

This bulletin describes both the that the compiler performs for
in the source code. Most of these

always at the expense of
input/output time, real time or

the user as well as those the user can embody
optimizations decrease central processor time
field length), but some decrease field length,
throughput.

It should be kept in mind that the best way to optimize code is to use efficient
algorithms. The higher the level at which a program is optimized, the better
the results.

Array subscript computation is discussed frequently in this section; therefore,
the formulas for one-, two-, and three-dimensional arrays are shmm in Table 1
for convenient reference. For each typical array reference, the address calcu
lation is shown in the form:

address of {A(subscript)} ~address of A+ offset* w

where offset is computed from the subscript expression as shown in the table,
and ~ is the number of words per element defined for the array {1 for REAL and
INTEGER, 2 for COMPLEX and DOUBLE PRECISION).

Because it is reasonable to assume that any programmer interested in optimal
program execution will compile the program under OPT""2 o:r UO (unsafe optimiza
tion), the optimizations performed by the compiler in those modes are discussed
first.

TABLE 1. ARRAY SUBSCRIPT FORMULAS

I
!Number of Dimension Reference Offset Computation
I Dimensions Declaration Element

1 A(L) I) I-1

2 A(L,M) A(I,J) I-1 + L*(J-1)

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin FTN4 imiza tion 3-3

COMPILER OPTIMIZATION

When OPT=2 is specified on the FTN control statement, the compiler optimizes the
user code in the process of generating object code. When the UO
option is also specified, all the OPT~2 are performed~ as well as
some additional ones that could cause incorrect results. (The additional optimi
zations performed when UO is specified are identified below.)

OPT=2 mode is a global optimizer; that is. it analyzes the structure of an
entire program unit the optimization process. A brief description of the
procedure followed by this optimizer will help to the specific optimiza
tions described here in more detail.

In optimizing mode. several passes are made over the source code. In the first
pass. the syntax of statements is analyzed, a symbol table is constructed, and
the statements are translated into an intermediate language similar to assembly
language. Typically~ several instructions in this intermediate language are
required for each executable FORTRAN statement. At this stage, no register
assignment has taken place; rather • an indefinite number of (Rl,
R2 •••• Rn) are used as needed. An example of a FORTRAN statement and its trans
lation into intermediate language is shown below:

FORTRAN statement:

Q ""' X + Y/Z

Intermediate Language Equivalent:

LOAD Y --> Rl
LOAD Z --> R2
DIVIDE Rl / R2 --> R3
LOAD X --> R4
ADD R3 + R4 --> R5
STORE RS --> Q

The intermediate language used in this example is similar to that used by the
compiler. but is different in format.

Local optimizations are performed before global optimization begins. (Local
optimizations are also performed when OPT=O or 1 is specified.) The local optim
izations include constant evaluation and elimination of redundant subexpres
siom;.

Global optimization begins by grouping sequences of intermediate language
instructions into units called basic blocks. A basic block is a sequence of
instructions with one entry and one point of exit. It has the property that if
one instruction in a block is executed, all the instructions are executed. This
grouping simplifies the process of analyzing the flow of control in the program.

lst Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-4

In the following example, each section of code between comment lines constitutes
a basic block.

c
X "" y
DO 120 I""l,N
A(I) "" B(I)

120 CONTINUE
GO TO (100,200,300) J

c
100 z "" Q

GO TO 500
c
200 PRINT * , X

GO TO 500
c
300 N ""' N + 1

A(I) "" 0
RETURN

c

The next stage is to construct a directed graph in which the basic
nodes, and the lines connecting the nodes indicate a conditional
tional transfer between blocks. The optimizer constructs a table
which variables are used and defined in each block.

blocks are
or uncondi
indicating

The optimizer then identifies all the loops in the program unit (IF loops as
well as DO loops). The loops are categorized according to how deeply they are
nested. (An unnested loop is in the same category as the innermost loop of a
nest.) Then, beginning with the innermost loops and proceeding outward, optimi
zations are performed for each loop. These optimizations include movement of
invariant code outside the loop, strength reduction, elimination of dead vari
able definitions, and register assignment.

After all loops have been optimized, object code is generated. As a result of
optimization, the order in which operations are performed can be different than
the order in which those operations were specified in the source code. The
result, however, is always identical.

Users with a knowledge of COMPASS are encouraged to examine the object listing
produced from an OPT=2 compilation to get an idea of the types of source code
manipulation that take place. The listing can be compared with one produced by
an OPT=O compilation.

The compiler-produced optimizations discussed in this section are
machine-independent optimizations and machine-dependent
Machine-independent optimizations are those that would produce

1st Edition (Nov. 1979)

divided into
optimizations.

more efficient

LBL-10189/3

Prog. terns Bulletin #3: FTN4 Optimization 3-5

code on any machine. Primarily, they consist of the elimination of unnecessary
operations. Optimizations in this category include common subexpression squeez
ing, elimination of dead variable definitions, invariant code motion, and compi
lation time evaluation of constants. Machine-dependent optimizations are those
that take into account the specific features of the systems on which FORTRAN
Extended programs run. They include replacing expensive operations with cheaper
ones and taking advantage of the functional units present on some models.

MACHINE-INDEPENDENT OPTIMIZATIONS

As stated above, machine-independent optimizations are those that result in the
elimination of operations. In some cases. the operations are completely removed
from the source code; this saves space as well as time. In other cases, opera~

tions are moved out of loops so that they are executed less frequently; this
does not necessarily save any space.

Invariant Code Motion

If a sequence of instructions appears in a loop 1 and the result of execution of
the instructions does not depend on any variable whose value changes within the
loop. the instructions are called invariant. If the instructions remain in the
loop, they are redundantly executed as many times as the loop is executed;
therefore, the optimizer removes such sequences from loops whenever possible.

For example, in the sequence:

DO 100 I""l.N
K(I) "" J/L+I**2

100 CONTINUE

neither J nor L can change in value during execution of the loop and. therefore,
J/L is invariant and can be safely removed from the loop. J/L is then calcu~
lated only once. rather than repeatedly. After optimization. the loop is
equivalent to the following:

R1 "' J/L
DO 100 I=l,N
K(I) "' R1+I**2

100 CONTINUE

(In this example of code after optimization. and those that follow, variables of
the form Rn indicate machine rather than memory locations; thus • the
examples should not strictly speaking be read as FORTRAN statements.)

lst Edition (Nov. 1979) LllL~l0189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3~6

Invariant code can extend for several statements, as shown below. This example
also shows that IF loops that are essentially the same as DO loops are optimized
in the same way.

Before optimization:

100 A = P(I) + S/Q
Y "' X/Z + D
I "' I + 1
IF(I.LT.l2) GO TO 100

After optimization:

Rl S/Q
Y "' X/Z + D

100 A = P(I) + Rl
I ,. I + 1
IF(I.LT.12) GO TO 100

Invariant code can also include code that is invisible in FORTRAN. For example,
in the sequence:

DIHENSION B(10, 10, 10)
DO 10 I=l,N
B(I,7,K) .. I

10 CONTINUE

The relative location of the element of array B is calculated by the formula
(see table 1):

I-1 + 10 * (6 + 10 * (K-1))

Without optimization, this entire calculation would be performed once for each
execution of the loop. After optimization, however, the invariant part of the
calculation is performed before entering the loop. This invariant part consists
of the following subexpression which, in fact, is most of the calculation:

-1 + 10 * (6 + 10 * (K-1))

The optimizer only moves code out of a loop when it is certain that the code is
actually invariant. There are circumstances in which execution of a sequence of
instructions proves it to be invariant but the determination cannot be made at

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 timiza tion 3-7

compilation time. These circumstances include the following:

1) When a call is made to a subprogram within the loop, and the code that is
being considered for invariancy uses the value of a variable that is either
in COMMON or is an actual parameter to the subprogram. For example:

Example 1:

COHHON X
DO 100 I = 1, N
A(I) "" X**2
B(I) = Y/Z
CALL MYSUB (Q,R,

100 CONTINUE

Neither X**2 nor Y/Z can be moved out of the loop, because the subroutine
MYSUB might change the value of X or z. However, if the call to MYSUB
were:

CALL MYSUB (Q.R.Z+2)

then Y/Z could be moved out of the loop. since the compiler assumes that
the call to HYSUB does not change the value of z.

2) When a conditional branch within the loop introduces the possibility that
the code might never be executed. For example:

3)

Example 2:

LOGICAL L
DO 100 I =1, N
IF (L) GO TO 110
J "" K+M

110 A(I) = B(I) + C(I)
100 CONTINUE

The expression K+H can be moved out of the loop so that it is executed only
once, but the store into J must be left in the loop.

When the value of an expression ultimately depends on a
capable of changing value in successive iterations

variable that
of the loop.

is
For

1st Edition (Nov. 1979) LBL~10189/3

Prog. Systems Bulletin #3:

example:

Example 3:

DO 100 I'"'1, N
J = I+oeo
K "" J* • • •
1 "" K+ •••
M = 1/Nl + N2*N3

100 CONTINUE

FTN4 Optimization 3-8

The division 1/N1 cannot be moved out of the loop because the value of 1 ulti
mately depends on that of I~ which changes each time the loop is executed.

Taking the limitations of the optimizer into account, the user concerned with
optimal performance can write loops so as to maximize the amount of optimization
that can take place. Above all, loop structure should be kept simple and
straightforward. Common should not be used for storage of strictly local vari
ables. Finally, expressions should be written in such a way as to make invari
ant subexpressions easier to recognize. For example:

DO 100 I=1,N
A(I) = (1. +X) + B(I)

100 CONTINUE

is preferable to

DO 100 I=l ,N
A(I) = 1. + B(I) + X

100 CONTINUE

because 1. +X is recognized as an invariant expression only in the first case.

Common sense must be used to decide when rewriting loops interferes with the
readability of code.

Whenever it is not clear whether the compiler can move invariant code, the user
can move it. Moving code sometimes requires the creations of temporary vari
ables to hold subexpressions; these variables should only be used locally, so
that the optimizer does not generate unnecessary stores into them (as explained
under Dead Definition Elimination). An exception to the effectiveness of this
technique is that the program should not perform its own subscript calculation
for a multidimensional array. For example, the sequence:

1st Edition (Nov. 1979) LB1-l0189/3

Prog. Systems Bulletin #3:

DIMENSION B(lO,lO,lO)
DO 10 I=l,N
B(I,7,K) ~I

10 CONTINUE

should not be written as:

DIMENSION B(lO,lO,lO)
ITEMP ~ -1 + 10*(6 + lO*(K-1))
DO 10 I=l,N
B(I+ITffi1P) = I

10 CONTINUE

FTN4 Optimization 3-9

even though the results are the same, because the rewritten version inhibits
certain special-case optimizations the optimizer performs on array subscripts.
(The expression in the rewritten version is not recognized as a subscript.)

Common Subexpr~ssion Elimination

A common subexpression is an expression that occurs more than once in the source
code. In completely unoptimized code, the expression is evaluated each time it
occurs. Instead, the optimizer tries to save the result of the expression in a
register whenever possible and to use that result instead of reevaluating the
expression.

For example, in the following sequence of code:

X = A*B*C
S(A*B) = (A*B)/C

all three occurrences of A*B are matched; A*B is evaluated only once, and the
result is used three times. This procedure can take place only when all of the
following conditions are true:

1) The expression can be recognized as the same expression. The compiler
reorders each expression into a canonical order~ and then compares expres~
sions term-by-term. Only expressions that match exactly are used. For
example, A+B, A+B+C, C+D, and so forth, are recognized as subexpressions of
A+B+C+D, but A+C is not recognized. B+A can be matched with A+B, however,
because they are rearranged into the same order. When a subexpression con
tains more than one operator of equal precedence, as in:

A*B/C

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-10

the expression is usually evaluated from left to right. Since the opera
tors are associative, however, the compiler might reorder the operations.
Parentheses can be used to ensure the desired grouping of subexpressions:

(A*B)/C

2) The expressions must be in the same basic block of code, otherwise it is
not feasible to allocate a register to save the result. The further apart
t•vo occurrences of the same expression are, the less likely it is that
they will be matched. Furthermore, no code can occur between occurrences
of the same expression that might cause it to change in value. For exam
ple, in the sequence:

X~ A(2)/B(2) - Q
A(I) "" 4.5
Z = A(2)/B(2) + 13.4

A(2)/B{2) cannot be matched as a common subexpression because of the possi
bility that I will be equal to 2 at execution time, changing the value of
the expression. In this example • if the user is sure that I will not be
equal to 2, the assignment to (I) should be placed after the assignment to
z.

Keeping these restrictions in mind, the user can write expressions so as to max
imize the chance that identical expression are recognized by the optimizer. For
example:

AA X*A/Y
B.B "" X*B/Y

is not likely to result in subexpression elimination, but

AA "' {X/Y)*A
BB "' (X/Y)*B

will do so.

Dead Definition Elimination

As explained above, the optimizer divides a program unit into basic blocks as
part of its analysis. In the process, it keeps track of the uses and defini
tions of each variable within the block. By investigating which combinations

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-11

of blocks can be branched to from a given block, the optimizer determines
whether the value of a variable is needed after the block is executed If the
value is needed, the variable is referred to as live on exit, otherwise it is
referred to as dead on exit. If a variable is dead on exit from a block, the
last store into the variable can be eliminated, since the value of the variable
will not be needed again in the program.

For example, in the program unit:

100

200

250

SUBROUTINE A (M,V 1 I)
DIMENSION V(M)
READ *,X
GO TO (100, 200) I
X "" X/2
IF (M .GT. 20) GO TO 250
STOP
PRINT * • X
RETURN
V(:i•l) '"' 25.6
RETURN
END

The store into X in the line labeled 100 is eliminated, because there is no path
through the program in which X could be referenced subsequently.

Locally (that is, within a basic block), other stores of a variable can also be
eliminated. For example, in the sequence:

X Y + Z
A X+ B
X "" X/R

all three of these statements must be executed whenever the first one is exe~

cuted. Therefore~ it is not necessary to store X after the first statement
because it is almost immediately redefined. A dead definition is eliminated
only if the optimizer can be certain that it is really dead. For instance, the
logic of the program might be such that it is impossible to decide for certain
where the last usage of the variable is. In this case, no stores can be deleted
(except locally). Also, the ability of the optimizer to eliminate stores even
locally is limited by the availability of registers. For example, in the
sequence:

X"" Y + Z
A(I+J.J+K.K+I) "" (B(M,N)+C(N,L)**(D(L,M)/E**X)/F
X .. Q/R/S/T

lst Edition (Nov. 1979) LBL-10189/3

Frog. Systems Bulletin #3: FTN4 Optimization 3-12

It is impossible to keep the value of X in a register throughout the execution
of the second statement. so X must be stored and then subsequently loaded.

There is not much the user can do to help the optimizer eliminate dead defini
tions. Of course, many dead definitions result from incorrect or redundant
code. For example, if the last statement to be executed in a program unit is a
store into a local variable, the statement is superfluous and should be elim
inated by the programmer. The best advice is to keep program logic simple and
avoid unnecessary use of COMHON blocks and equivalence classes.

Constant Evaluation

At all optimization levels. the compiler attempts to evaluate as many constant
subexpressions as possible. The reason for this is that programs are usually
executed many more times than they are compiled. For example:

X "' 3.5 + 4.**2

The cmnpiler evaluates the expression and replaces it with the constant 19.5.
Some constant subexpressions serve no useful purpose and should be evaluated by
the programmer. not the compiler. Others are justified 9 however. when they make
programs more readable. This is particularly true when one of the components of
the expression is a standard constant. such as pi or e. Because the expression
is evaluated at compile time at minimal expense. it is better to leave such
expressions unevaluated.

The user can help the optimizer by grouping constant subexpressions within an
expression. For example. it is better to write:

X= Y*(3.14159265358979/2.)

than:

X= 3.14159265358979*Y/2.

because the constant subexpression is recognized in the first case but not the
second.

Test Replacement

Test replacement consists of replacing. in a loop, all or some occurrences of a
variable. The control variable is especially likely to be eliminated. A vari~
able can be eliminated if it satisfies the following conditions:

lst Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-13

It is not in COHHON or a formal parameter

Its value is not required outside the loop

At least one of its appearances in the loop is in the form of a linear
function (especially as an array subscript); for example:

DO 100 I "' l,N
A(2,I) = 33.2

100 CONTINUE

Test replacement of I can take place in this loop, but not in the following
case:

DO 110 I = 1, N
X= SQRT(FLOAT(I))

100 CONTINUE

In test replacement, the increment and test portions of the loop code are
rewritten so that a linear function of the control variable is incremented and
tested, rather than the control variable itself; for example:

DO 100 I = l,N
A(2,I) ""2.5

100 CONTINUE

In this loop, test replacement causes the address of the successive elements of
the array A to be used for testing and incrementing, rather than the variable I.
Because the distinction is easier to see in C0}1PASS code, the object code gen
erated for this loop under OPT=O and OPT=2 is shown on the next page:

1st Edition (Nov. 1979) LBL~l0189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3~14

Under OPT .. Q:

SX7 lB Initialize loop counter
SA7 I

)AA BSS OB

SAS CON. Fetch constant 2.5
SA4 I Compute subscript reference
BX7 xs
SA7 X4+A~l8 Store element

SAS I Increment counter
SX7 X5+18
sxo X7~13B

SA7 AS
HI XO,)AA Test and loop

Under OPT""2

SAl CON. Initialize Xl with constant
SB6 A+llB Initialize B6 with highest store address
SB7 A Initialize B7 with first store address

)AA BSS OB
BX7 Xl Prepare store register with constant
SA7 B7 Store
SB7 B7+1B Increment store address
GE B6,B7,)AA Test address limit and loop

When the control variable has more than one use within a loop, test replacenent
can still take place, but the control variable is not necessarily eliminated.
However, at least one increment instruction per loop iteration is eliminated.

1. 2. MACHINE-DEPENDENT OPTUUZATION

As stated above, machine-dependent optimizations are those that take advantage
of the peculiar features of the systems one which FORTRAN Extended programs can
be run. They fall into three main categories:

Those that replace slo~Jer operations by faster operations. In FORTRAN. the
relative speeds of operations can be ranked as follows (slowest first):

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-15

** Exponentiation

I Division

* Multiplication

+- Addition and subtraction

Those that reorder instructions so as to use simultaneously as many func
tional units as possible. These optimizations are only carried out on sys
tems with functional units; that is~ the 6600~ 7600, CYBER 70 Hodels 64 and
76~ and CYBER 170 Models 175 and 176 Computer Systems.

Those that schedule register usage so as to minimize stores and loads.
These apply to all computer systems.

~-~ength Reduction

Strength reduction is one instance of the replacement of expensive operations by
cheaper operations. Specifically~ strength reduction replaces exponentiation by
multiplication, and multiplication by addition.

Some types of strength reduction are local optimizations. For example, any
exponentiation by a small integer constant (less than about 12) is replaced by a
series of multiplications. Exponentiation by larger integers results in a call
to a FTN4 Library routine, which also users multiplication for exponentiation by
any integer up to about 100.

Another example is r~ultiplication by 2, which can be replaced by addition of the
variable to itself; thus:

J .. 2*1

becomes:

J "" I+I

When OPT•2 is specified, strength reduction also takes place in other situa
tions. For example~ if a subscript expression is of the form:

n*I + m

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-16

where n and m are unsigned integer constants, and I is a variable that varies
only linearly in the loop (such as the control variable). then the multiplica
tion can be replaced by an addition. For example, in the loop:

DO 120 I=l,lOO
B(4*I + 3) "" 2.5

120 CONTINUE

the loop is rewritten as follows:

Rl = 3
DO 120 1"'1.100
Rl "' R1 + 4
B(Rl) "" 2.5

120 CONTI:!i!UE

so that the multiplication is replaced by an addition.

Special Casing of Subscripts

In a multidimensional array, subscript computation requires one or more multiply
instructions. The formula for this computation is shown in table 1. If any of
the declared dimensions (except the last dimension, which is not used in a mul
tiply) is a power of 2, the multiplication can be replaced with a shift instruc
tion which executes more quickly. This is possible because subscript dimensions
are positive numbers less than 2**17 - 1. (Shifts cannot replace multiplica
tions of other integer variables because the results might overflow 48 bits,
leading to invalid results.)

In the following example:

A(I,J,K) ~ 452.3

the subscript calculation is:

I - 1 + 2 * (J-1 + 4*(K-1))

After optimization, both multiplications are performed by shifts instead of mul
tiply instructions.

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 imization 3-17

The replacement of multiplication by a shift also takes place when the array
dimension is a sum or difference of two powers of 2. In this case, the nuober
to be multiplied is shifted twice, and the two results are added or subtracted.

In the following example:

DIMENSION A(6,12,3)

A(I,J,K) = 452.3

the formula for the subscript is:

I-1 + 6*(J-1 + 12*(K-1))

or

I + 6*J + 72*K - 79

Both multiplications are performed using shift and add instructions.

Another type of special casing takes place when the first subscript
of a subscript is a constant. In this case, the constant is added
address of array, saving one addition each time the subscript is
For example, in the following case:

DIMENSION A(10,10,10)
DO 100 I""1,N
A(4,J,I) "" I

100 CONTINUE

expression
to the base
calculated.

the address of the array element in the assignment statement is calculated as
follows:

Address "" Base address +
(3 + 10 * (J- 1 + 10 * (I - 1)))

where the base address is the address of the first element in the array. Since
the constant part of the calculation only needs to be performed once, 3 is added
to the base address at compile time 9 effectively transforming the calculation to
the following form:

Address = Biased base address +
(10 * (J - 1 + 10 * (I - 1)))

The same principle can be applied to the case where the two leftmost subscript
expression, or all three, are constants.

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-18

Functional Unit Scheduling

The central processor in several of the computer systems on which FORTRAN
Extended programs run has multiple functional units. The optimizer takes advan
tage of this feature whenever possible by scheduling instructions so as to use
units simultaneously. This optimization is performed only when the program is
compiled on a system with functional units; the compiler assumes that the pro
gram is to be executed on the same system on which it was compiled. However~

performance is not degraded if the program is executed on a different system.

An important special case of functional unit scheduling is array element pre
fetching. Prefetching takes place when the elements of an array are used suc
cessively in a loop. With prefetching~ loading of the next element to be used
overlaps usage of the current element. For example:

DO 100 I~l.N
A(I) = B(I) + C(I)

100 CONTINUE

Without prefetching, both B(I) and C(I) would have to be loaded before being
added, so either the floating add unit or the increment unit (which is responsi
ble for loads and stores) would be idle while the other unit was in use. With
prefetching. B{I+l) and C(I+l) are fetched at the same time as B(I) and C(I) are
added.

The potential danger with prefetching is that the last iteration of a loop might
attempt to load a nonexistent array element. In the example. B(N+l) and C(N+l)
are loaded (but not used) even if the arrays only have N ele1nents. If the array
is stored near the end of the user•s field length. this attempt might result in
an address out-of-range (an arithmetic mode 1 error). Thus~ a program that exe
cutes correctly without prefetching might abort with prefetching. For this rea
son, prefetching is not performed for compilations under OPT~2 unless there is
no danger of exceeding field length. However. when the UO (unsafe optimization)
option is specified in addition to OPT~2. the compiler can prefetch for any
array. without regard for the possibility of exceeding field length. Therefore.
UO should not be used unless the user is sure that field length is not exceeded.

In the example above~ field length is not exceeded because the increment between
prefetched elements is only one word, and at least one word is guaranteed at the
end of the field length.

Register Assignment

As one of the last stages of code generation, the optimizer decides which regis
ter to use for each variable and temporary quantity in every sequence of code.
As part of the process~ an attempt is made to minimize the number of loads and

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-19

stores required. Whenever a program uses more quantities than there are regis
ters, some of the quantities not immediately in use must be stored and subse
quently loaded. To avoid this, the optimizer analyzes the register usage of a
sequence of code and decides whether to put each quantity in an A, B, or X
register.

For some quantities, no alternative is available. The value of most variable or
array elements must be in an X register (which is 60 bits long), and the address
of an operand to be loaded or stored must be in an A register. However, any
quantity known to be less than or equal to 18 bits long can be kept in either a
B register (which is 18 bits long) or an X register. These quantities include
DO-loop control variables, limits, and increments, and any quantity used in
array subscript calculation.

In the following example:

DO 100 I=J,K,L
A(I) =B(M,N,I)

100 CONTINUE

I, J, K, L, M, and N can all be legally placed B registers, because none of
these quantities are allowed to exceed 18 bits.

Usually, register assignment consists of reallocating quantities from X regis
ters to B registers, since X registers are usually scarcer than B registers, but
occasionally the reverse is true. A special case of register assignment is
retention of B registers across calls to basic external functions (library rou
tines), which takes place only when the UO option is specified. Nortnally, all
registers are saved whenever an external reference occurs, because it is impos
sible to determine at compile time what registers are used by the referenced
function. However. when the UO option is specified. the compiler assumes that
certain B registers are not used by basic external functions. and does not
bother to save those registers when such functions are referenced. vfuen the UO
option is specified, the user should ensure that functions with the same names
as basic external functions are not loaded at execution time. unless the func
tions are referred to in EXTERNAL statements or type statements that override
the default type.

OPTIMIZATION EXAMPLE

A somewhat
tions are
that would

more complex example can serve to illustrate how various optimiza
combined. The example below shows a simple program unit and the code

be generated for it when compiled with each of the following two con-
trol statements:

FTN,OPT=O.OL.
FTN.OPT=2,UO,OL.

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4

Source Code:
SUBROUTINE ASCH
INTEGER B, C
COMMON A(lO,lO), B{lO,lO), C(lO,lO)

DO 100 I•2,10
A(I+l,I-1) .., B(I+l,I+l) + C(I-l,I-1)

100 CONTINUE

UNDER OPT ... O:

*

)AA

UNDER OPT"'2

*

RETURN
END

SX7
SA7
BSS

SA5
sxo
DX7
SA4
SAJ
IX6
SA6

SAS
SX7
sxo
SA7
MI

EQ

2B
I
OB

LINE 4
Initialize·loop counter

LINE 5
I Compute subscript references
13B
XO*XS
X7+B Fetch B and C elements
X7+C-26B
X3+X4 Compute sum
X7+A-24B Store result in A

LINE 6
I Increment loop counter
XS+lB
X7-13B Test for completion
AS
XO,)AA Loop

LINE 1
EXIT.

LINE 4
SA2
SAl
SBS
SB6
SB7

B+26B Pre-fetch initial B and C elements
c

)AA BSS
IX7
SA2
SAl
SA7
SB6
GE

lst Edition (Nov. 1979)

13B Preset address increment
A+2B Preset initial store address
A+132B Preset highest store address

LINE 4
OB
Xl+X2 Compute sum
A2+B5 Fetch next B and C elements
Al+BS
B6 Store A
B6+BS Increment store address
B7,B6,)AA Test and loop

LINE 7

LBL-10

3-20

3

• Systems Bulletin #3: FTN4 Optimization 3-21

Only the ect code generated for the statements is shown; a full
listing of the ect code would also include code to allocate data blocks and
COMMON blocks, and to establish communication between program units. The COM
PASS instructions shown are not explained; they should be self-evident to anyone
familiar with COMPASS. The code under OPT8 2 shows the following
features:

Test replacement (the B6 and B7 hold linear functions of the con-
trol variable, which does not exist within the loop)

Strength reduction (the multiplications that would be used in the
subsc calculation have all been replaced by additions)

Common subexpression elimination (not well shown in this example, because
the 1+1 and 1-1 have disappeared completely)

Register assignment (use of B to hold array subscripts)

(of elements of B and C)

The object code under OPTs2 is two words shorter than the object code under
OPTsO. More significantly~ the loop itself is reduced from six words to two
words.

2. SOURCE CODE OPTIMIZATION

A program compiled under OPT~2 almost always runs faster than a program compiled
under OPT~O, or OPTml. The amount of improvement depends primarily on the number
of loops in the program, because that is where most of the optimization under
OPT=2 takes place.

In addition to the optimizations performed by the compiler, the user can rewrite
the source code in such a way as to improve its performance, especially for
cases that the compiler is incapable of optimizing. Time should be devoted only
to optimizing loops, especially innermost loops; in straight-line
code are not likely to be fruitful.

Source code optimization should not be done at the expense of other desirable
features; some optimizations decrease execution time while increasing field
length. (This is true for compiler optimizations.) Also~ many
tions decrease the comprehensibility or ease of maintenance of a program. The
added cost in programmer time often exceeds the savings in execution time.

1st Edition (Nov. 1979) LBL-10 3

• Systems Bulletin #3: FTN4

With these cautions in mind, the user can decide which of the source code optim
izations described here is worthwhile in any given applicatione

2 ••

Probably the most important source code optimizations are those intended to max
imize the optimizations the compiler can perform. May of these have
been discussed in the context of the compiler optimizations~ so only a summary
is necessary heree

A primary consideration is to avoid unnecessary use of COMMON blocks and
equivalence classes. With in COMMON, every subroutine call or function
reference the compiler to store the variable before the reference,
because it cannot be at compile time whether the variable is used in
the referenced subprograme In particular, the practice sometimes encountered of
allocating local scratch variables in unused of COMMON blocks to save
space is very detrimental, and can actually cause space to be wasted. For exam
ple, in the following sequence:

COMMON I,A(lOOO) (1000)
DO 100 I..,l, 1000
A(I) ... 4*B(I)
CALL SUB1 (C,D)

100 CONTINUE
CALL SUB2
END

I is in COMMON, therefore its value must be stored before each call to SUB! or
SUB2. These two stores, 30 bits each, occupy the same amount of space as the
variable. If I were not in COMMONt the stores could be the
same amount of space and considerably execution.

Equivalence classes inhibit optmization in somewhat less obvious ways. The fol-
lowing is typical:

D !MENS ION X (1
EQUIVALENCE l).W)

w"" y
PRINT *,X(I)

Without the EQUIVALENCE statement, the assignment statement could be eliminated
because the value of W is not used in the programe However, because W is
equivalenced to X(l), and the PRINT statement might reference X(1) 9 the assign
ment statement cannot be eliminated.

lst Edition (Nov. 19 LBL-10 3

tems Bulletin FTN4 3-23

These cautions are not meant to
classes. In

program unit~ it is faster

uses of COMMON blocks and
9 when variables are needed by more than one
them COMMON than as

because the code for

Another major way to
and

also
imizer is that it its more

usage of variables in different

been mentioned that the

list is eliminated.

to
units short.
But the

program
Of course 9 this

to the
and monitor the

user should in mind that the more
as

resem
(The

.) For
~ the more different kinds of tiona are

this is that a DO should be used whenever
in the

I ,. 1
100 I) ~ B) + C(I)

I "" I + 1
IF (I.LE.12) GO TO 100

code identical to that

DO 100 I .. 1,12
A(I) oo B(I) + C(I)

100 CONTINUE

by the DO

and all the same
to the

are performed.
identical form:

if the loop is

I "" 1
100 A(I) ,. B(I) + C(I)

I .. I + 1
IF(I+S.LE.17) GO TO 100

some of the optimizations the compiler performed in the first case cannot be
in the second , test) •

2.2.

When the user is a program to
tion should be paid to the loops, because

in a typical FORTRAN program.
their of the

1st Edition (Nov. 19

the source code, atten-
that is where most of the execution
Frequently, the users can take

of their own program to

LBL-10

• Systems Bulletin FTN4 Optimization 3-24

in such a way as to reduce the total number of
formed at execution time.

ions per-

One of the best known methods of restructuring is called The
idea is to reduce the overhead result from incrementing and testing the
control variable by reducing the number of times the is executed. For

, the following loop:

DO 100 Iw1,10000
X(I) ~ Z(I)**2

100 CONTINUE

can be replaced by this

DO 100 I~1,9999,2
X(I) ~ Z(I)**2
X(I+1) ~ Z(I+1)**2

100 CONTINUE

In the second case, only half as many increment, test, and branch instructions
are executed.

One disadvantage of loop unrolling is that it makes programs more difficult to
understand. Carried to its logical conclusion, loops would be completely elim
inated, and replaced with long sequences of assignment statements. Clearly the
user who is this concerned with optimization would be better off coding in COM
PASS in the first

A more technical limitation of unrolling arises in the case when it is not known
at compile time just how often the loop be executed. For example, if the
DO statement is:

DO 100 I•l,J

unrolling does not produce correct results unless J is an even number
that each assignment statement is unrolled into two statements).

Another way to reduce the overhead associated with loops is to combine them. For
example, in the sequence:

DO 100 I•l~K
I) ~ B(I) + C(I)

100 CONTINUE
DO 110 J~l,K
E(J) oo F(J) + G(J)

110 CONTINUE

1st Edition (Nov. 1979) LBL-10

terns Bulletin FTN4 3-25

the two can be combined into one~ thus half the overhead asso-
ciated with the

DO 100 lw1 ~K
I) "" B(l) + C(

E(I) ~ F(I) + G(I)
100 CONTINUE

is
tool is limited by
same number of times.

worthwhile; however~ its usefulness as an
that both must be executed the

2.3.

The following is a list of miscellaneous for optimization which
be found under icular circumstances. They are discussed very

1. in an Each conversion from one mode to Avoid
another instructions. An exception is

as are
choice among When a

should be made
least efficient):

Real

Double Precision

Double

If a program is
DATA statement is
variables,

to

quicker
modes is
the

than real numbers~ whatever the
for an ~ the choice

(from most efficient to

inefficient, and should be avoided whenever
float point number has 48 icant bits
more than enough for most purposes.

to be loaded once but executed many times, the
to statements for initialization of

arrays.

The forms of conditional branch, from slowest to , are as follows:

GO TO

1st Edition • 1979) LBL-1 3

• Systems Bulletin FTN4

IF statement

GO TO

, the assigned GO TO makes the flow of control in a
program more difficult, and also impedes the detection of logic errors dur
ing debugging; it must be used with caution. When more than four or five
branches can be taken from a point, the computed GO TO is more effi
cient than the IF statement.

4. More efficient code is if one branch of an arithmetic IF or two-
branch logical IF immediately follows the IF statement. In this case, the

for this statement falls through instead of branching.

5. References to basic external functions should be consolidated whenever pos
sible. For example:

A .,. ALOG + ALOG(D)

is not as efficient as

A "' ALOG(C*D)

Exception: Depending on values of C and D. overflow may result computing
ALOG(C*D).

6. If the executable statements in a function subprogram can be consolidated
into a single assignment statement 9 a statement function is more efficient.
Because the code for a statement function is expanded inline

the overhead associated with parameters, saving
and branching to and from the function is saved for each ion refer-
ence.

7. Expressions should be factored whenever to reduce the number of
required for For

X ~ A*C + B*C + A*D + B*D

should be replaced by:

X ~ (A + B) * (C + D)

The first version four mult and three additions; the
second only one multiplication and two additions.

ht Edition (Nov. 19 LBL-10

tem;a Bulletin

tion: If A is very
there could be a loss of

to -D~

8. Use the 1 ine MOVLEV to vectors from one of
memory to another. For vector transfers~ MOVLEV is faster than the

DO for vectors longer than 60 elements in SCM to SCM and
LCM to LCM transfers, and 20 elements in SCM to LCM and LCM to SCM
transfers.

3.

The remainder of this section presents some miscellaneous ideas des to
the accuracy and ef of mathematical programs coded in FORTRAN

Extended.

It is better to sum from small to large than from to small. That is, when
a group of numbers is to be added , if the numbers vary widely in
tude, a more accurate result is achieved if the smallest numbers are added
firstp and then the t? rather than the other way around.

This can best be explained by an illustration. For
assume that the computer can maintain four
When two numbers are added, only the four
are , and the remainder is truncated.
to be added:

.00001234

.00005678

.00003121

.41610000

.21320000

the sake of
decimal digits of accuracy.

digits of the result
series of numbers is

the true result is .62940033. If the numbers are added in from to
smallest, and all but four s digits of each result discarded, the
result is • • If they are added from smallest to the result is
.6294, Which is more accurate.

The
est,

this phenomenon is that, when add from smallest to
• the cumulative total of the small numbers often has

one or more within the range of the numbers.

1st Edition (Nov. 19 LBL-10189/3

Prog. tems Bulletin #3: FTN4 timization 3-28

from largest to smallest, however~ the total becomes very large immediately~ and
smaller numbers are ignored completely.

3.2. AVOID ILL-CONDITIONING

Because of the inherent properties of certain mathematical functions~ precision
is increasingly lost as the function approaches a certain value. In an effort
to counteract this effect, programmers often use the double precision versions
of the functions. However~ this technique is drastically less efficient and
often produces results that are less accurate. In many cases, better and faster
results can be achieved by rewriting the referencing expressions and avoiding
the double precision functions.

The problem arises for values of the argument for which the derivative of the
function is very large. More precisely, when the following function:

is very • which is usually true when the derivative is very large.

For example, in the expression:

SQRT(1.-X**2)

when the value of xis very close to 1., the result of the tends not
to be very accurate. Therefore, x is frequently declared double precision, and
the expression rewritten as:

SNGL(DSQRT(l.-X**2)

However, noting that:

The expression can be rewritten with greater accuracy as:

SQRT((l.+SNGL(X)) * SNGL(1.-X))

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FT~4 Optimization 3~29

The amplification of relative error when the value of a function is near a cer~

tain value is a particular problem with trigonometric functions. With the
tangent function, the function g(x) defined above has the value:

g(x) "" sin

g increases without limit as x approaches any multiple of pi/2 radians. ill1en
the value of x might be in this range, the programmer frequently declares x dou~
ble precision and computes the function as follows:

SNGL(DTA~(X))

However, greater accuracy and efficiency can be achieved by declaring x double
prec1s10n and using the addition formula for tangents (since a double precision
number is the sum of its upper and lol\l'tH' parts). The formula is as follows
(1..rhere xu is the upper word of the double precision number, and x 1 is the lower
word):

tan(x)+tan(x 1)

tan(xu+xl) .. T:tan{;~)i:-.;~{x-~-)

7 Furthermore, for any number x less than 10 , tan (x 1) is approximately the same
as x 1• Therefore the formula can be rewritten as:

or, in FORTRAN:

DOUBLE PRECISION X

XU = SNGL(X)

XL=X-XU

tan(x)+x 1 u

RESULT= (TAN(XU) +XL) / (1. - TAN(XU) *XL)

using no double precision arithmetic.

Similar substitutions can be made for sine and cosine, using the addition forrrm~

las and the information that sin(x
1

) is approximately x
1

, while cos(x
1

) is

1st Edition (Nov. 1979) LBL-10189/3

Prog. Systems Bulletin #3: FTN4 Optimization 3-30

approxiMately 1.0.

An even better example is the exponentiation function EXP. In this case, the
larger the value of x, the larger the function g(x) defined above. The addition
f o mula in this case is as follows:

or, in FORTRA."l:

DOUBLE PRECISION X

exp (x +x
1

)
u

exp(x)+x 1exp(x)
u u

RESULT = EXP(SNGL(X)) + (X- SNGL(X)) * (EXP(SNGL(X)))

* * *

Copies of this and other Programming Systems Bulletins are available from the
Computer Center Library, (50B/1245A x5529).

Bulletins published to date include:

#1 Guidelines for Converting FTN4 Programs To FTNS and the New FORTRAN-77
Standard

#2 F45 FTN4 to FTNS Conversion Aid Reference Guide

#4 (Preliminary) Cyber Loader Reference Guide (in preparation).

1st Edition (Nov. 1979) LBL~l0189/3

This work was prepared with the support of the U. S. Department of Energy under
Contract W-7405-ENG-48.

lst Edition (Nov. 1979) LBL-10189/3

U,S,GPO:l~B0-698-169/F-106

